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A General Approach to Limiting Normality
of the Product-Limit Estimator

by

A. J. Quinzi1'2 and T. M. Smif.h1

ABSTRACT

Langberg, Proschan and Quinzi (Ann. Statist. (1981), to appear]
obtain strongly consistent estimators for the unobservable marginal
distributions of interest in the competing risks problem. These
estimators resemble those of Kaplan and Meier [ J. Amer. Statist.
Assoc. (1958) 63] but are appropriate when (a) the risks are dependent
and (b) death may result from simultaneous causes., We establish
asymptotic normality of these estimators., Our result thereby extends
that of Breslow and Crowley [ Ann. Statist., (1974) 2] from the case of

a continuous survival function to an arbitrary survival distribution.

This preliminary report represents work currently in progress.

1
Temple University

2
Research supported by the Air Force Office of Scientific Research

under AFOSRGEEEES-78-367 .

\.x FORCE UFFICE UF SCiENTLFIC RESEAKOM (AFSC)

“E (P DPRANSMITTAL T0 ¥DC
nom teal repcrt nas beow reviwesd and is

s Lochn l.. rsiddbe 1AW AFR 1‘3\)"2 (7b)'

ap} roved ter put
pisteinrario 18 unsmited,
A. D. BLUSE

Tecrmichl inforwatinn

officer

-

e SN




0. Introduction and Summary
In the classical theory of competing risks [cf. the excellent

monograph of Birnbaum (1979)] it is assumed that (a) the risks, i.e., the
random variables of interest are independent and (b) death does not result
from simultaneous causes., The classical estimator for the marginal distri-
butions of interest in the competing risks problem is that of Kaplan and
Meier (1958) or generalizations thereof [cf. Peterson (1975, 1977)].
Langberg, Proschan, and Quinzi (1981) [hereafter referred to as LPQ(1981)]
obtain strongly consistent estimators for the unobservable marginal distri.
butions of interest when assumptions (a) and (b) above fail to hold. These
estimators resemble those of Kaplan and Meier (1958). 1In Section 1, we
examine the competing risks problem in the presence of dependent risks

and state a number of known results. In Section 2, we establish the
asymptotic normality of the LPQ(1981) estimators. Only the outline of
proof is given, This preliminary report represents work currently in

progress.




1. ompet model

Let there be a finite number of causes of death labelled 1, ..., Ir.
We associate with each cause j a nonnegative random variable TJ. J=1, sees Lo
The random variable Tj represents the age at death if cause j were the only
cause present in the environment. The complete collection of random
variables T1 s vess Tr is not observed, Instead, only two quantities are
observed: the age at death given by T = min (T;, ..., T,) and the cause
of death, labelled &, given by I €wf such that &(T) = I, where «f{
represents the collection of nonempty subsets of {1, seey r} « Thus,
() =Iifandonlyif T=1T, foreachi € Tand T# T, foreach i ¢ I.
When death results from exactly gne of the r possible causes, as is usually
assumed, then § is the index i for which 7 = T;. The blomedical
researcher is interested in making inferences about the unobservable random
variables T{, eees Tr by using information from the gbservable quantities,
namely the life length T and cause of death &. In particular, he seeks
to estimate the 2¥ - 1 survival probabilities

Hy(t) = Plmin (1, 5 € 9) >¢],J €d .

We use the following notation throughout., If T is a nonnegative random
variable with distribution function F, then F = 1 - F,

LPQ(1978) prove the following
Theorem 1,1, let 7 = min (Tys oees T,), where T;, ..., T are nonnegative
random variables, Define F(t, I) = P(T > t, &(I) =1I), F(t, I) =
TS t, §@ =1, 1€d , Ft) = T g g Flt, 1) and F(t) = 1 - Fw).
Then the following statements hold:




(1) A necessary and sufficient condition for the existence of a set of
independent random variables { H, I €« } which satisty |

P(T >t, §(1) =1) =P(min (B, T €& ) > ¢, H < Ky, each J # I] ¥
is that the functions F(-, I), I 64 , have no common discontinuities in
the interval [0, & (F)), where & (F) = sup {t: 1 - F(t) > 0}.

(ii) The random variables {HI. 1€ } in (1) have corresponding survival

probavilities { Gr(-), T €&}, Gy(t) = P(H, > t), which are uniquely

defined on the interval [0, @ (F)) 1s follows:

(1.1) G(t)= I [Fa)/Fa~)]-e [-It aF (- I)/F] 0S t € &(F)
° I s xp O \d ’ 1 ]

a t

where FO(-, I) is the continuous part of F(-, I), the product is over the
discontinuities { a} of F(-, I), I ét' , and the product over an empty
set 1s defined as unity.
Remark 1,2, Although motivated by the competing risks model, Theorem 1,1
applies to any model where observations include (1) the time at which a
particular event occurs and (2) the identity of the causes (among a finite
number) which result in the occurrence of the event. For example, suppose
| a personnel study is undertaken to study the departure patterns of employees
in a large company. The data on each employee might consist of (1) length
of stay, i.e., the time from arrival to termination, and (2) the reason for ’
termination. Here, each employee teminates (dies) for one or more of

saveral reasons (causes).
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Remark 1.3, Formula (1.1) represents each distribution in the independent
collection { K, I €<l } as a function of the (observable) cause-specific
subdistribution functions F(:, I), I € d , as well as the (observable)
survival function F(t) = P(T > t), It is this representation of distri-
butions in the independent collection by observable functions which plays

a key role in the estimation problem.

Let 21 = (T1i' cosy Tri)’ i=1, «es, n, represent a random sample |
from the joint distribution of the nonnegative random variables Ty, ..., Tpe |
For each J €« , let M (t) = P [min (T, 3 € 9) >t]. Forj € {1, ..., 7},
we write Mj(t) instead of M{j} (t). Foreachi=1, ..., n, only Ti and

Ei are observed, where 'Ti = min (T1i' coes Tri) and Ei = J whenever $

7, = Tji for each j € J and T, # Tji for each j ¢ J. It is important

to note that we have not made either of the two classical assumptions, namely ﬁ
(a) the risks, i.e., the random variables Tis eooy '1‘r are independent; and

(b) death does not result from simultaneous causes, i.e., P('l‘:L = 'l‘j) =0

for i # j. If (a) and (b) hold, the function l-dJ(t) may be estimated

(consistently) [ cf. Peterson (1975)] by using a generalized version of
the Kaplan-Meier (1958) (product-limit) estimator

N
(1.2) M) = Dl - )/ -2+ 1], '

where the product is over the ranks i of those opdered observations T, (1)

¢ T #
such tha ) < t< T(n) and T(:\.) corresponds to a death from at ¥




least one cause j € J. If T, (n) corresponds to a death from a cause

o ~
j € J, then MJ(t) is defined to be zero for t > 7(n)‘ Otherwise, MJ(t)
is undefined for t > T (n)* [ In the original formulation by Kaplan and

Meier (1958), r = 2 and T, corresponded to the time until death, while T,
corresponded to the time at which a loss occurred. ]

Suppose now that it is not assumed that Tys ooes Tr are independent.
LPQ(1981) prove the following
Theorenm 1,4, Let ‘1‘1, evey Tr be nonnegative random variables such that
the functions F(t, I) = P(T < t, &§(1) =1), I €d , have no common
discontinuities. Definee; = {J €& : JNI#4}. FixI €d . Ten

foreach t € [0, &(F)],

(1.3) M (t) = ; éIJI G,(t)

if and only if

(1.4a) K @)/fi(a") = [ F@)/ff(a”), a € p(dlp)
1, otherwise;

and

(1.4b) T, >t|1'1=t)=P('rI, >t|7T, >0,

where G, is given by (1.1), D(JI) is the set of discantinuities of the
function F(t, ) = H(TS ¢, ED € ;) Ty=nin (1, 1€ I)and
I' is the complement of I in {1, «ee, r}.




Bemark 1,5. By finding consistent estimators for the functions G; in (1.3),
LPQ(1981) establish that (1.4a) and (1.4b) are necessary and sufficient
conditions on the joint distribution of T, ..., ’1‘r for the existence of
a consistent estimator of i.[ in (1.3).
Remaric 1,6, Suppose that the random variables T, = min(T;, 1 € I), I ed .
have absolutely continuous distributions., Let mI(t) [ respectively, ﬁI(t)]
and mI | I'(1'.) [ respectively, ﬁ.[ l I'(t)] denotes the density (respectively,
survival) function and conditional density (respectively, conditional survival)
function of TI and ’TI given TI' > t, Then condition (1,4b) is
equivalent to
%Ilﬁﬂﬁﬁlp“°=mﬁ“ﬁﬁ“%

In other words, the conditional failure rate function of Ty given T, >t
is equal to the (unconditional) failure rate function of T 1o Stated
differently, the random variables T I and TI' are independent "along the
diagonal T 1= T 7:"+ This property of "diagonal independence" is of
importance in the case of dependent competing risks and is presently being
studied by the authors, Desu and Narula (1977) arrive at a condition
similar to (1.4b) in the special case when Tys eees Tp have a joint distri-
bution which is absolutely continuous.

Suppose now that the functions F(t, I), I Gv! , have no common dis-
continuities. We make no assumption as to the independence of '1‘1. ooy Tr'
In view of (1.3), a natural estimator for M is

(1.5) H(t) = By (8,

I
JEX




where ’GJ () is obtained from the right side of (1.1) by replacing
k

F(-, I) and F by their empirical counterparts

RS-
Fn(t’ I)-n ?X{Tis t' §i=I}
and

R
WO =TI X <4,

where X 4 is the indicator function of the set A. LPQ(1981) show that in

this case, (1.5) is a (strongly) consistent estimator for M; when (1.4a,b)
hold.

Bemark 1,7, If T,, ..., T, are independent and B(Ty = 'rj) =0 for i¢# j,
then (1.5) reduces to the usual Kaplan-Meier (1958) estimator (1.2) or

a version thereof,

Remark 1,8. Suppose for a moment that we make no assumption on the underlying
distribution of Ty, .., T, except that the functions F(t, I), I € J , have

no common discontinuities, Let 0 = T(O) < oo £ T(n) < 'r(n-H) =

denote the ordered values of times T, gr eoes T ,, 8t which deaths occur,
We do not exclude the possibility of multiple deaths at T (3)° We thus
obtain the (possibly degenerate) intervals [0, T(1)). [TU)' T(z)), covs

[ T(n)' 0 ) such that the number of deaths in any interval is exactly one.
For each interval [T(J)’ "'(;.+1)>- estimate the proportion py of indi-

viduals alive just after 7T () that survive the interval as follows:




let N(t) = the number of individuals observed and surviving

at t, when deaths due to cause I (but not deaths due
to any other cause) at t itself are subtracted off;
and 8 (J) =) - N( T(J)) = the number of deaths at T(j)

Then the estimate of p‘j above is

=[N Tesy 8 I /¢ UORE

Now, to estimate the probability of surviving until t if cause I were
the only risk pressnt in the environment, Kaplan and Meier (1958) calculate

1.6 ML) = ..
(1.6) i = I3,
For any given set of data, formula (1.6) ylelds the same numerical

estimate as formula (1.5). Recall, however, that (1.5) is a consistent
estimator of EI if and only if (1.4a,b) hold. Yet, even in the face of

ignorance about ths truth or falsity of (1.4a,b), we know precisely what i
ter of under distribution is being egtimated (consistentl #
by (1.,6), namely
(1.7) O G ()
Jed_ I
1 \

where G-J is given by (1.1). To the authors'! knowledge, this fact has J
never bsen pointed out,

L mad M ki e




2, The main result

In this section we outline a proof of the fact that, viewed as a
process in t, the estimator (1.5) converges to a Gaussian process, As a 1
result, we extend a result of Breslow and Crowley (1974) from the case of
a continuous survival to an arbitrary survival function. For simplicity,
we assume here that the distribution F of T has finitely many discontinui-
ties, Thse case of a countable infinity of discontinulities will be presented
in a subsequent report.

We inquire into the asymptotic distribution of

~
M (t) = 2= I

;g J Ly g [F(F (7)),

a t

I

where the last product is over the set of observations {a} such that
Tyi=aand & =J,1=1, .., n Let this set {a} of points be denoted
by D(n, J) and let C(J) [ D(J) ] be the set of continuities (discontinuities)
of the function F(t, J). Then we can write

H.(t)

- - (t)
(2.1) V—;[Gn'J(t) - G ()] =‘V'xT[eH“'J -6’ ]

=VELH (6 - H(1)] oH(t) 'V"'[% (£) - H(8)] 2H (),

J

wore i, 50 = T [R@EEIX @ i

H(t) = 2 ln [ F(a)/‘(a')] x(a) - Io aFC(+, J)/F, and the function

H'(t) is betwesn B, 5(t) and H(t).
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We consider first the asymptotic distribution of 4n [H, g(t) = Hy(t)] .
We have

‘V'rT[Hn'J(t) - HJ(t)] =ﬁ[An.J(t) = Ay(1)] +V'1T[Bn'J(t) - B;(¥)],

where A, ;(t) = 2 . 1n ['fn(a)/Fn(a‘)] Xéa(.r)" ‘;) Xéa(.}),

a
AJ(t) = 2 Wn{Wa)/F@a")] X(a) , ]
ast D(J)

t) = In[ F (a)/F (a~ - X(a) , and |
a2 B SERORENGD XD, :

B (t) = ~ j': ar’( , O)fF. |

We can now state

Theorem 2,1, Assume that each function F(-, J), J € ¥ , has finitely

many discontinuities. Fix J €< and let 0 < a; < ... < 2, < oo denote
the discontinuities of F(t, J). Then the k-dimensional random vector whose

ith component is
i
N E{w[F,e)/Fe] ~ 1 [Fa)/fe)]}

converges in distribution to a k-dimensional multivariate normal with mean

vector 0 and covariance matrix t = (O'ij), which can be represented thus:

b1 b1 b1 soe b.' '1
N A ,'
t . by b1 -o-b2 b1 fb2+b3 oo b, j!-b2+b3
.
Lb1 b1'.'b2 b1+b2+b3 sos b1+ ees + %J

where b, = [F(ai)/F(ai)] - [F(ai")/F(ai')] yi=1, (00, ke H

amre————— R L T B - e — e s




The proof of Theorem 2,1 is straightforward and is omitted.

Now define a process 2, 1(1:) inD=D[0, O(F)] whose finite-dimensional
9

distributions are multivariate normal with EZ 3,1 (t) =0 and
COV[ZJ'1(S). ZJ.1(t)] = {0y, for s € [y, a541)s t € [a5,844)y 55 ¢
0‘31 for 8 > t;

where @', . is the (1,3)th entry of ¥ in Theorem 2.1 and D[ 0, & (F)] is

J
the space of functions on [0, Q((F)] that are right-continuous and have
left-hand limits. Such a process exists by Theorem 15.3 of Billingsley (1968).

Theorem 2,2, The process ﬁ[hn'J(t) - AJ(t)] converges weakly to ZJ'1(t)

asn-> .

Proof. Note that 4fm [A_ (t) = Ay(t)]

L~

| - = -
=An 1§1'{1n [ F@)/F a0 IXy () - 1n Fay)/Fay)

for t € [aj. a,.). For 85 min |ai - aj| , it is easily seen

JH 1S1,3gk
that w "(8) = sup min (| x () = x, (41, [ x(t) - x,(t)] ) =0,

where x (t) =W[An'J(t) - AJ(t)] and the supremum extends over t, t{, t,
such that t, € t < t,and t, - t, < 8. The theorem follows from
Theorem 2.1 above and Theorem 15.4 of Billingsley (1968). I
Breslow and Crowley (1974) show that the pair (X,, Y,) € p[o, a(F)] %
DL0, @ (F)] defined by X =4n (F, - F), Y = ,ﬁ[a‘é txc(J) @)X p(g.ny (a)/n

- l?c(-. J)] converges weakly to a bivariate Gaussian process (X, Y) which has
mean vector zero and a covariance structure given by

" Cov(X(s), X(t)) = F(s)F(t), Cov(X(s), Y(t)) = FC(S. DI - Fc(t. J)]
"7l cov(¥(s), X(t)) = FC(s. 3)F(L), Cov(X(s), ¥(t)) = Fo(s, J) - F(s)F(t, J).
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Thus, by Theorem 4 of Breslow and Crowley (1974), the process
{n_[Bn.J(t) - BJ(t)] converges weakly to the Gaussian process ZJ'Z(t)
defined by

t -
2,0 = fo (FAACL 0 s ] - frao/m,

where (X, Y) is the bivariate mean 0 Gaussian process satisfying (2.2).
Furthermore, the covariance structure of the limiting process ZJ’Z(t)
can be obtained in a manner similar to that in Breslow and Crowley
(1974).

Combining this result with Theorem 2,2 above, we have

Theorem 2,3, The processﬁ[ﬁn J(1’.) - HJ(t)] converges weakly to the
Gaussian process ZJ.1(t) + ZJ,Z(t) = ZJ(t).

Remark 2.4, The covariance structure of the limiting process in Theorem
2,3, as well as in the remaining theorems, may be obtained in a tedious
but straightforward manner. The exact derivations are given in a later
report.

Consider now (2.1). Since 'J'n'[l-ln-‘J(t) - H;(t)] converges weakly, the
second term in (2.1) converges to 0 in probability. Thus, we have
Theorem 2,5. The process ﬁ[(}n’J(t) - GJ(t)] converges weakly to the
Gaussian process ZJ(t)'aJ(t), where ZJ(t) is the limiting process in Theorem 2.3.
Remark 2,6. Finally, by an application of the so-called & -method
[ ef. Rao (1973) ], we see that the estimator%;(t) given by (2.2) also

converges weakly to a Qaussian process.
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